Меню

НОВОЕ — ХОРОШО ЗАБЫТОЕ СТАРОЕ (1969-1988гг.)

НОВОЕ — ХОРОШО ЗАБЫТОЕ СТАРОЕ

Несмотря на постоянно сокращающиеся возможности совершенствования современных поршневых двигателей, большое внимание, по-прежнему, уделяется наиболее широко применяемому четырехтактному рядному бензиновому двигателю внутреннего сгорания. При этом характерно использование богатого опыта разработок современных ДВС, а также стремление улучшить способы их размещения в автомобиле.

С точки зрения повышения КПД двигателя, целесообразно использовать большой объем цилиндра. В этой связи наиболее предпочтителен одноцилиндровый двигатель, обычно применяемый в мопедах и мотоциклах. Большим недостатком одноцилиндрового двигателя является его неуравновешенность, особенно поступательно движущихся масс. У малоразмерных двигателей масса поршня невелика и вызываемые ею действующие по оси цилиндра силы инерции частично могут быть уравновешены противовесами на коленчатом валу. Вращающиеся противовесы вызывают силы инерции, действующие в горизонтальной плоскости, однако при вертикальном положении оси цилиндра мотоцикла они относительно невелики и такой способ уравновешивания двигателя вполне приемлем.

В двигателях с цилиндром большего размера требуется, однако, хорошее уравновешивание сил инерции I и II порядка возвратно-поступательно движущихся масс. Это осуществляется двумя парами противовесов, вращающихся в противоположном направлении, причем для уравновешивания сил инерции II порядка частота вращения противовесов должна быть в 2 раза больше частоты вращения коленчатого вала. Уравновешивание сил инерции I порядка существенно усложняет двигатель, а сил инерции II порядка — неприемлемо с позиции стоимости автомобиля.

Существуют конструкции одноцилиндровых двигателей без кривошиино-шатунного механизма с одним возвратно-поступательно движущимся поршнем. В этом случае для уравновешивания сил инерции поршня необходима другая масса, движущаяся также поступательно в противоположном направлении по той же оси. Это привело к размещению противовеса по оси цилиндра и приводу его кривошипно-шатунным механизмом. В двухтактных двигателях противовес использовался в качестве нагнетателя. Такая схема нашла применение в двигателе мотоцикла DKW и дизелях «Юнкерс» (ФРГ).

При размещении обоих поршней по одной оси получается длинный двигатель со сложным кривошипно-шатунным механизмом. При несоосности поршней, кроме того, возникают неуравновешенные моменты от их сил инерции.

Поэтому гораздо чаще применяют конструкцию двухцилиндрового двигателя с противолежащими цилиндрами (оппозитный двигатель), в которых поршни движутся навстречу друг другу. Условие соосности цилиндров можно выполнить путем применения, например, вильчатого шатуна в одном из цилиндров. При традиционной конструкции шатунов возникающий момент сил инерции I порядка снижают минимизацией величины несоосности цилиндров. Такое решение с успехом применяется в легковых автомобилях особо малого класса («Ситроен», «Татра 12» и др.) и в качестве примера на рис. 98 представлена силовая установка автомобиля «Ситроен 2СV», в которой использован оппозитный двухцилиндровый бензиновый двигатель воздушного охлаждения с цилиндрами из алюминиевого сплава, имеющими износостойкое покрытие на никелевой основе «Никозил». За вентилятором системы охлаждения расположен масляный радиатор.

Следующее ближайшее число цилиндров двигателя равно трем. До последнего времени такое число цилиндров встречалось только у двухтактных двигателей. В этом случае речь идет не столько об уравновешивании, сколько о трудностях охлаждения двухтактных цилиндров с рабочим объемом более 350 см3. У цилиндров с большим объемом возникает неравномерное поле температур днища поршня, пригорание поршневых колец, большие температурные деформации цилиндра, выпучивание перегородок между цилиндровыми окнами и т. д.

image140

Интерес к трехцилиндровым четырехтактным двигателям появился в процессе поиска повышения индикаторного КПД путем увеличения размера цилиндра. Трехцилиндровый рядный двигатель плохо уравновешен. Наименее уравновешены моменты сил инерции I порядка. Так как требования к уровню вибраций и шуму в автомобиле постоянно возрастают, то у трехцилиндрового двигателя применяется дополнительный вал для уравновешивания моментов сил инерции I порядка с помощью вращающихся в противоположные стороны противовесов на коленчатом и уравновешивающем валах. Такой способ уравновешивания трехцилиндрового японского двигателя “Дайхатсу” показан на рис. 99.

image141

В четырехцилиндровом рядном двигателе не уравновешены силы инерции II порядка. Однако они относительно невелики и могут быть погашены до приемлемого значения подвеской двигателя.

У тракторов с четырехцилиндровым двигателем, который образует часть рамы, вибрация двигателя через нее переносится на сиденье тракториста, поэтому силы инерции II порядка необходимо уравновесить.

У автомобилей с четырехцилиндровым двигателем, которые по уровню вибраций и шума должны конкурировать с автомобилями, оснащенными шестицилиндровым двигателем, также необходимо уравновесить силы инерции II порядка. На рис. 100 показана такая система уравновешивания, в которой применены два вспомогательных уравновешивающих вала, приводимые коленчатым валом и вращающиеся с удвоенной по отношению к нему частотой вращения. В приводе одного из валов размещена пара шестерен, обеспечивающих различные направления вращения валов. Противовесы расположены в середине двигателя, что не вызывает каких-либо дополнительных неуравновешенных моментов.

image142

Целесообразность применения пятицилиндровых двигателей была рассмотрена ранее; шестицилиндровый рядный двигатель полностью уравновешен. Двигатели с другим расположением цилиндров, например, четырехцилиндровые и шестицилиндровые двигатели с V-образным расположением цилиндров уравновешиваются рассмотренными выше способами. Обычно они применяются в тех случаях, когда к двигателю предъявляются такие требования, как небольшая его длина или высота. Двигатели с звездообразным расположением цилиндров имеют небольшую массу и длину, но их конструкция не подходит для применения в автомобилях вследствие сложного устройства механизма газораспределения, впускного трубопровода, слива масла, доступности при обслуживании и т. д.

РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ ВАНКЕЛЯ

Несколько лет назад появился роторно-поршневой двигатель Ванкеля, имеющий оригинальную конструкцию с треугольным ротором, вращающимся относительно эксцентрикового вала. Ротор через зубчатую передачу с внутренним зацеплением приводит в движение эксцентриковый вал, частота вращения которого втрое больше частоты вращения ротора. Форма внутренней полости корпуса двухэпитрохоидная, так что между ротором и корпусом образуются три камеры, в которых осуществляется цикл, аналогичный циклу поршневых двигателей. В части уравновешенности речь идет о силах инерции вращающихся масс, которые можно полностью уравновесить противовесами эксцентрикового вала При создании конструкции этого двигателя возникали трудности с герметизацией уплотняющих пластин ротора, с каналами систем газообмена, смесеобразованием и т. д. Двигатель обладает преимуществами в части уравновешенности, имеет небольшое число деталей и малую массу. Однако у него неблагоприятная с позиции тепловых потерь форма камеры сгорания, что является причиной относительно низкого индикаторного КПД и большого удельного расхода топлива. Отсутствие поступательно движущихся масс, больших поверхностей трения и большого числа подшипников улучшает механический КПД, что несколько компенсирует большие тепловые потери. Следует иметь в виду, что хотя роторно-поршневой двигатель находится в начале своего развития, он уже достаточно хорошо зарекомендовал себя.

В части содержания вредных веществ в отработавших газах роторно-поршневой двигатель имеет как преимущества, так и недостатки. Преимущества состоят в том, что в связи с наличием более низких температур сгорания в роторно-поршневом двигателе образуется меньшее количество NOx. Условия образования СО и СНx аналогичны условиям в поршневых двигателях. Однако большая поверхность камеры сгорания и смазывание рабочей поверхности ротора добавлением масла в топливо (как у двухтактных двигателей) приводят к повышенному содержанию СО и СНx, устраняемых в термическом реакторе. Чтобы при характерной для этого двигателя пониженной температуре отработавших газов температура в реакторе сохранялась на нужном уровне, короткие выпускные трубопроводы имеют теплоизоляцию, как это показано на поперечном разрезе двигателя японской фирмы «Тойо Коге» (Япония) на рис. 101.

image143

Дальнейшие разработки двигателя Ванкеля этой фирмой (см. рис. 102) вызывают большой интерес, особенно системы создания расслоенного заряда ROSCO [23 ] и CISC. При частичной нагрузке воздух подается в камеру не через основной канал, а по малому дополнительному впускному каналу. Это улучшает перемешивание смеси, позволяет получить более бедную смесь и снизить расходы топлива. В системе ROSCO впрыск бензина осуществляется непосредственно в камеру механическим насосом через установленную в корпусе двигателя форсунку. При таком смесеобразовании в камере сгорания ротора к моменту подачи искры свечой зажигания может образоваться расслоенный заряд, если основная часть воздуха поступает по впускному каналу, а через дополнительный малый канал с тангенциальным входом воздух, вдуваемый с большой скоростью в камеру сгорания, завихривает рабочую всмесь в ней.

Как видно, двигатель Ванкеля может быть улучшен, и, по-видимому, он займет надлежащее место в ряду двигателей внутреннего сгорания.

Каждый из типов двигателей имеет свои достоинства и недостатки: один двигатель ценится за достаточно хорошую систему охлаждения, другой — за ее отсутствие вовсе. В одном типе двигателей предпочтение отдается только поступательному движению поршня, в другом — только вращательному. На практике применение находят равно как двенадцатицилиндровый, так и одноцилиндровый четырехтактный двигатели.

14.1. ДВУХТАКТНЫЕ ДВИГАТЕЛИ

Двухтактный двигатель чаще всего применяется в случаях, когда требуется небольшая максимальная мощность. Малоразмерный одноцилиндровый двухтактный двигатель воздушного охлаждения имеет очень простую конструкцию и небольшое количество деталей. Предельным случаем может служить двигатель с компрессорным (калильным) зажиганием для авиамоделей.

Самые большие, созданные для судов, поршневые двигатели также являются двухтактными с крейцкопфным кривошипно-шатунным механизмом. Низкую частоту вращения этих двигателей выгодно использовать для непосредственного привода корабельных винтов. У этих двухтактных двигателей легко изменяется направление вращения, и они не требуют применения для этого реверс-редуктора.

Двухтактные двигатели применяются в автомобилях гораздо реже, что вызвано более высоким удельным расходом топлива и повышенной токсичностью отработавших газов. Эти два фактора вызваны организацией процессов газообмена и смазывания двигателя. У малоразмерных двухтактных двигателей, имеющих не более четырех цилиндров, применяется кривошипно-камерная продувка. Эта схема проста, не вызывает возрастания массы двигателя и хорошо зарекомендовала себя, однако КПД ее низок и ведет к уменьшению объема свежего заряда в цилиндре. Об этом свидетельствуют сравнительные диаграммы фаз газораспределения четырехтактного а и двухтактного б двигателей, приведенные на рис. 103.

image144

У четырехтактного двигателя выпускной клапан открывается, когда поршень от ВМТ проходит 87 % длины своего полного хода. Впускной клапан закрывается, когда поршень пройдет 90 % длины полного хода от ВМТ. Этим точкам соответствует поворот коленчатого вала приблизительно на 440°. У двухтактного двигателя с симметричными фазами газораспределения режим продувки крайне невыгоден. Выпускное окно открывается перед открытием, а закрывается — уже после закрытия впускного (продувочного) окна, поэтому часть свежего заряда проникает в открытое выпускное окно. Более целесообразно, когда симметричны лишь фазы газораспределения впускного (продувочного) окна. В этом случае выпускное окно открывается после прохождения поршнем 55 % длины его полного хода от ВМТ, а впускное (продувочное) окно закрывается после прохождения 83 % полной длины хода от ВМТ. Таким образом, в четырехтактном двигателе для наполнения цилиндра свежей смесью и отвода продуктов сгорания необходимо, чтобы коленчатый вал повернулся на 440°, а в двухтактном — только на 135°. Очевидно, что у двухтактного двигателя за 1/3 периода вращения коленчатого вала невозможно достичь такого же хорошего наполнения цилиндра свежим зарядом, как у четырехтактною двигателя.

Недостатком кривошипно-камерной продувки является очень короткий период впуска, особенно при симметричном открытии третьего (впускного) окна нижней кромкой юбки поршня. Чтобы улучшить процесс газообмена, часто применяют золотник, приводимый коленчатым валом, или пластинчатый обратный клапан в выпускном окне. Несмотря на эти устройства, а также на то, что двухтактный двигатель имеет число тактов рабочего хода в единицу времени в 2 раза больше, чем четырехтактный двигатель, удельные мощности обоих типов двигателей весьма близки.

Главный недостаток двухтактных двигателей заключается в повышенном содержании вредных СО и СНx в отработавших газах. Выброс NOx относительно невелик, так как очистка цилиндров двухтактных двигателей от отработавших газов происходит хуже и поэтому в них достигается такой же эффект, как и при рециркуляции отработавших газов в четырехтактном двигателе. Однако низкая температура отработавших газов, сопровождающая малый выброс NOx, при использовании для дожигания СО и СНx тепловых реакторов нежелательна. Недостатки способа смазки цилиндров двухтактного двигателя уже были рассмотрены ранее.

Указанные особенности двухтактных двигателей представляют большие препятствия для их использования в автомобилях, поскольку устранения этих недостатков простыми способами пока не найдено.

Было бы несправедливым, однако, не указать на некоторые преимущества этих двигателей, особенно дизельных. Универсальность, например, двигателей типа GMC и ЯАЗ-204 является до настоящего времени практически уникальной.

В этих двигателях применяется механизм газораспределения с двумя выпускными клапанами и подачей свежего воздуха через окна в гильзе цилиндра посредством приводного нагнетателя типа «Рут». Оригинальна и конструкция топливной аппаратуры, состоящей из выполненных в одном корпусе секции топливного насоса и форсунки. Уравновешивание моментов сил инерции первого порядка возвратно-поступательно движущихся масс осуществляется противовесами на распределительном валу (у двухтактного двигателя он вращается с частотой коленчатого) и на симметрично расположенном уравновешивающем валу. Взаимозаменяемость этих двух валов и возможность поворота головки цилиндра позволяют разместить выпускной трубопровод на левой или правой стороне ряда цилиндров. Направление вращения двигателя можно изменить с помощью замены шестерен привода распределительного вала. Хорошая организация продувки дала возможность достичь в этом дизеле такого же среднего эффективного давления, как и в четырехтактном, и его удельная мощность почти в 2 раза выше мощности четырехтактного дизеля.

Применение турбонаддува и четырех клапанов в цилиндре четырехтактного дизеля снизило преимущества высокой удельной мощности двухтактных дизелей типа GMC и ЯАЗ-204. Турбонаддув двухтактных двигателей является более сложным, так как их отработавшие газы имеют низкую температуру из-за содержания холодного продувочного воздуха. Кроме того, двигатель при неработающем турбокомпрессоре пускается труднее. Тем не менее в двухтактных дизелях GMC также начали применять турбонаддув. Турбокомпрессор подает воздух в нагнетатель типа «Рут», при этом часть мощности турбокомпрессора может быть передана через него на коленчатый вал.

Существует ряд интересных конструкций двухтактных двигателей. Примером такой конструкции является экспериментальный двигатель «Орион», США (рис. 104).

image145

Схема этого двигателя дана на рис. 105. Двигатель состоит из поршневого генератора горячих газов и источника механической энергии, в качестве которого служит газовая турбина.

image146

Поршневая часть выполнена в виде двухтактного двигателя со встречно движущимися в цилиндре поршнями. От поршневого двигателя приводится большой центробежный нагнетатель, подающий воздух как для сгорания в цилиндры, так и для охлаждения их воздухом. Для преобразования тепловой энергии в механическую служит газовая турбина, работающая на отработавших газах, смешанных с охлаждающим воздухом. Таким образом, в двигателе «Орион» для выработки механической энергии используется как теплота отработавших газов, так и теплота, отводимая в охлаждающий воздух от ребер. Разработка этого двигателя находится в начальной стадии.

14.2. ПАРОВЫЕ МАШИНЫ

За время своего развития паровые машины значительно усовершенствовались, поэтому на них было обращено внимание при поиске замены двигателя внутреннего сгорания. При сгорании в оптимальных условиях продукты сгорания жидкого нефтяного топлива были бы безвредны для здоровья, однако этого не происходит в двигателе внутреннего сгорания. Характеристика крутящею момента поршневой паровой машины очень выгодна для привода автомобилей, но для этого необходимо решить ряд задач. Следует напомнить, что паровую машину для автомобилей использовали раньше, чем двигатель внутреннего сгорания, и именно автомобиль с паровой машиной первым преодолел рубеж скорости 200 км/ч.

image147

Конструкция безопасного котла не представляет трудностей. Удается ограничить объем котла до объема трубы, имеющей вид спирали, тем самым одновременно решается вопрос о быстром парообразовании. Однако большую проблему представляет вода. На железных дорогах применение воды в локомотивах с котельными установками и непрерывным режимом эксплуатации оправдано. При эксплуатации автомобиля, например, один раз в неделю, замерзающая жидкость доставляет большие хлопоты. Пропагандист паровых автомобилей Лир предлагает для применения жидкость, которая заменила бы воду, но полной информации о составе этой жидкости не имеется. Независимо от типа применяемой жидкости образующийся пар необходимо конденсировать и вновь использовать. При этом возникают большие трудности, так как для размещения конденсаторов потребовался бы объем всего автомобиля, а привод вентилятора требовал бы значительной мощности. По этой причине система конденсации в локомотивах отсутствовала.

Другие трудности связаны с работоспособностью масла при высокой температуре и с устранением его из сконденсированной жидкости. Было сконструировано несколько типов силовых установок с паровым двигателем и приемлемым содержанием вредных веществ в отработавших газах, причем применялись как поршневая паровая машина, так и паровая турбина.

Дальше всех пошел пионер паровых двигателей Лир, который создал много прототипов. В первую очередь он использовал поршневую паровую машину, позднее испытывал паровую турбину. Паросиловая установка, предназначенная для размещения сзади в автобусе, показана на рис. 106. Паровая турбина развивает мощность около 160 кВт и работает с полной конденсацией Некоторые прототипы этой установки вследствие больших размеров конденсаторов работали с частичной конденсацией, т. е. при полной мощности часть пара отводилась в атмосферу. Для легкового автомобиля «Шевроле Монте Карло» также была разработана паросиловая установка, имевшая мощность 50 кВт и размеры 610x660x410 мм.

Однако, как показывает анализ цикла Карно, при использовании паровой машины невозможно достичь удовлетворительного термического КПД силовой установки.

Вследствие этого имеется мало надежд на применение в автомобилях паросиловых установок.

14.3. ГАЗОТУРБИННЫЕ ДВИГАТЕЛИ

В авиации газотурбинный двигатель полностью заменил поршневой даже в сравнительно небольших установках. Все больше применяется газовая турбина в судостроении и на тепловых электростанциях. От турбины в этих установках требуется отдача максимальной мощности при постоянной частоте вращения, частичные нагрузки при максимальной частоте вращения не используются и нет необходимости в быстром изменении мощности и частоты вращения. Повышается интерес к применению газовой турбины и для привода автомобиля. Ряд особенностей газотурбинного двигателя служат причиной того, что он до сих пор не применяется в автомобилях.

image148

Характер кривой крутящего момента одновального газотурбинного двигателя невыгоден для применения в автомобиле. Момент быстро падает с уменьшением частоты вращения и имеет нулевое значение при снижении максимальной частоты вращения приблизительно на 40 %. Для привода автомобиля пригодна только двухвальная газовая турбина, изображенная на рис. 107. Турбина привода компрессора 3 приводит в движение компрессор 7, тяговая турбина 4 размещена на валу отбора мощности. В теплообменнике 5 отработавшие газы подогревают воздух на входе его в камеру сгорания 2, что улучшает термический КПД установки.

Турбинное колесо 4 имеет наибольший момент, когда его частота вращения равна нулю, при этом компрессор с турбинным колесом 3 может вращаться с максимальной частотой вращения. При возрастании частоты вращения тяговой турбины ее крутящий момент изменяется в соответствии с графиком, приведенным на рис. 107, б. Такая характеристика крутящего момента очень выгодна для использования в автомобиле и может исключать использование преобразователя момента.

Другое отрицательное свойство газотурбинного двигателя состоит в том, что его удельный расход топлива при частичной нагрузке быстро возрастает, У автомобиля, особенно легкового, двигатель в основном работает при частичных нагрузках и полностью загружен лишь в течение очень короткого периода времени. Этим объясняется тот факт, что газотурбинный двигатель начали применять прежде всего на грузовых автомобилях для дальних магистральных перевозок, когда автомобильный двигатель постоянно работает в условиях, близких к полной нагрузке.

Возникают также проблемы размеров газотурбинного двигателя. КПД газовой турбины зависит не от частоты вращения колеса, а от его окружной скорости. Для сохранения оптимальной окружной скорости при необходимости уменьшения максимальной мощности следует уменьшить диаметр колеса, а его частоты вращения увеличить. Однако у турбин с небольшим диаметром колеса зазор между наружным диаметром лопаток и корпусом в связи с наличием допусков на изготовление не уменьшается пропорционально снижению диаметра турбинного колеса, а имеет большее относительное увеличение. Это означает большие потери при перетекании газа через этот зазор и ухудшение КПД турбины. Поэтому газовую турбину невыгодно применять в установках мощностью ниже 100 кВт. Эти недостатки газотурбинного двигателя тормозят его применение в легковых автомобилях.

Следует, однако, рассмотреть и основные преимущества газотурбинного двигателя, к ним относятся:

image149

Эти преимущества являются настолько важными, что в настоящее время ведутся интенсивные разработки газотурбинного двигателя для легковых автомобилей Основное внимание уделено повышению максимальной температуры газов па входе в турбину Уже получены хорошие результаты, и имевшаяся первоначально температура газов 900 °С увеличилась до требуемых 1300 °С На рис 108 показано влияние температуры на входе в турбину на ее мощность, термический КПД и удельный расход топлива

Работу в условиях постоянной температуры выше 1300°С не выдерживает ни один металл, поэтому необходимо применять керамические материалы Для изготовления лопаток турбины целесообразно использовать нитриды кремния, которые и при указанной температуре имеют достаточную прочность Недостатки керамических материалов состоят в том, что они не выдерживают резкого изменения температур при холодном пуске и изменении нагрузки Разработки керамических материалов успешно продолжаются и можно ожидать, что после 1985 г появятся материалы, которые позволят газотурбинному двигателю иметь такой же удельный расход топлива, как у дизеля

Для снижения удельного расхода топлива в газовой турбине используют вращающийся теплообменник Он представляет собой диск из пористого керамического материала, приводимый от двига^ечя и вращающийся с очень низкой частотой вращения Отработавшие газы из турбины проходят через этот диск и нагревают его. Поворачиваясь, нагретая часть диска подходит к отверстиям трубопровода, ведущего от компрессора в камеру сгорания, и воздух, проходя через диск в противоположном направлении, нагревается Теплота, которая была бы отведена из двигателя с отработавшими газами, используется для подогрева воздуха, подаваемого в камеру сгорания. Трудности состоят в герметизации диска теплообменника, необходимой для предотвращения потерь теплоты при перемещении диска от одного трубопровода к другому Негерметичность современных теплообменников составляет сейчас лишь 2 % от величины, наблюдав шейся их первых прототипов

Хорошие динамические характеристики двухвальной газовой турбины обеспечиваются регулируемым направляющим аппаратом, т.е. поворотными направляющими лопатками перед вторым турбинным колесом. Привод лопаток — гидравлический, управляемый электронным устройством, которое осуществляет также контроль без опасности работы турбны при возникновении неисправностей в ней или в некоторых из ее деталей

При резком отпускании педали управления двигателем поворотные лопатки перед турбиной устанавливаются в положение торможения и на турбине возникает отрицательный момент, в результате действия которого частота вращения тяговой турбины быстро снижается

В качестве примера на рис. 109 представлен схематич ныи разрез турбины, разработанной фирмой «Мерседес-Бенц» для большого легкового автомобиля. Турбина выполнена по двухвальной схеме с вращающимся теплообменником. Достигнутая мощность 94 кВт, наибольший крутящий момент 332 Нм при заторможенном вале тяговой турбины. Степень сжатия одноступенчатого радиального компрессора равна при этом 4, температура на входе в турбинное колесо достигает 1252°С.

image150

Расчетная мощность этого двигателя составляет 110 кВт при частоте вращения вала первой турбины 60 000-65 000 мин-1 , максимальный крутящий момент 550 Нм. Двигатель рассчитан на работу при температуре поступающих из камеры сгорания газов на вход в тур-бицу около 1350 °С. Диаметр колеса компрессора составляет 180-185 мм, колеса первой турбины 165 мм, второй — 170-175 мм. На основе характеристики этого двигателя были проведены расчеты расхода топлива автомобилем массой 1600 кг, оснащенного таким двигателем. При скорости 90 км/ч, расчетный расход топлива равен 5,1 л/100 км, при скорости 120 км/ч — 6,7 л/100 км, в городском цикле согласно стандарту ДИН 70030 расход топлива составил 14,2 л/100 км. Турбина совместно с воздушным фильтром и приводом вспомогательных агрегатов имеет массу 240 кг, длину 770 мм, ширину 650 мм, высоту 550 мм. При проведении расчетов площадь фронтальной проекции автомобиля считалась равной 2 м2, а значение коэффициента сопротивления воздуха сx — 0,3.

Другая турбина, разработанная фирмой «Фольксваген», имеет сходную концепцию и развивает мощность 110 кВт. Степень сжатия компрессора 4,5, расход воздуха 0,84 кг/с. Температура газа на входе в турбину равна 1110°С, минимальный удельный расход топлива составляет 290 г/(кВт.ч), расход топлива при 30 %-ной нагрузке равен 330 г/(кВт.ч). Масса турбины 210 кг. Расход топлива автомобилем модели «Ro 80″ массой 1700 кг в городском цикле составил 15,3 л/100 км, на шоссе — 9,4 л/100 км, а в среднем — 12,6 л/100 км. Окружная скорость колеса компрессора с загнутыми назад лопатками составляет 513 м/с, максимальная частота вращения компрессора равна 63 700 мин-1 , тяговой турбины — 52 200 мин-1 . На входе в компрессор имеется регулируемый направляющий аппарат в виде поворотных лопаток, которые позволяют снизить расход топлива при частичных нагрузках и на холостом ходу. Состояние развития в области газовых турбин в 1981 г. показывало, что достигнут заметный рост долговечности турбин мощностью выше 100 кВт, хотя по этому параметру турбины все еще отстают от двигателей внутреннего сгорания. Большое преимущество турбины состоит в том, что она может работать на заменителях нефтяного топлива. Дальнейшее развитие газотурбинных двигателей зависит от применения новых керамических материалов для рабочего колеса и направляющего аппарата турбины, ее теплообменника и камеры сгорания. При использовании в автомобиле двухвального газотурбинного двигателя необходимо после тяговой турбины применить редуктор и многоступенчатую автоматическую коробку передач. При этом использование трансформатора крутящего момента после турбины не требуется.

14.4. ДВИГАТЕЛИ СТИРЛИНГА

Важным новым источником механической энергии для привода автомобиля является двигатель Стерлинга. Он почти неизвестен, существуют только его прототипы, поэтому можно дать лишь беглое описание его принципа действия и конструкции. В первоначальном виде он существовал как тепловая расширительная машина, в цилиндре которой рабочее тело например, воздух, перед сжатием охлаждался, а перед расширением — нагревался. Схема и принцип действия такого двигателя показаны на рис, 110.

image151

В верхней части цилиндра 1 имеется водяная охлаждающая рубашка 2, а дно цилиндра постоянно нагревается пламенем. В цилиндре размещен рабочий поршень 3, уплотненный поршневыми кольцами и соединенный шатуном с коленчатым валом (на рисунке коленчатый вал не показан). Между дном цилиндра и рабочим поршнем находится поршень-вытеснитель 4, который перемещается в цилиндре с большим зазором. Заключенный в цилиндре воздух через этот зазор перекачивается вытеснителем 4 либо к днищу рабочего поршня, либо к нагреваемому дну цилиндра. Вытеснитель приводится в движение штоком 5, проходящим через уплотнение в поршне, и приводимым эксцентриковым механизмом, который вращается с углом запаздывания около 90° по сравнению с механизмом привода рабочего поршня.

В положении а поршень находится в НМТ и охлаждаемый стенками цилиндра воздух заключен между ним и вытеснителем. В следующей фазе б вытеснитель движется вверх, а поршень остается в НМТ. Воздух между ними выталкивается через зазор между вытеснителем и цилиндром к дну цилиндра и при этом охлаждается стенками цилиндра. Фаза в является рабочей, в течение которой воздух нагревается горячим дном цилиндра, расширяется и выталкивает оба поршня вверх к ВМТ.

После совершения рабочего хода вытеснитель возвращается в нижнее положение к дну цилиндра и выталкивает воздух через зазор между стенками цилиндра в камеру под поршнем, воздух при этом охлаждается стенками. В положении г холодный воздух подготовлен к сжатию, п рабочий поршень движется от ВМТ к НМТ. Поскольку работа, затрачиваемая на сжатие холодного воздуха, меньше работы, совершаемой при расширении горячего воздуха, то возникает полезная работа. Аккумулятором энергии, необходимой для сжатия воздуха, служит маховик.

В описанном исполнении двигатель Стирлинга имел низкий КПД, так как теплоту, содержащуюся в воздухе после совершения рабочего хода, необходимо было отводить в охлаждающую жидкость через стенки цилиндра. Воздух в течение одного хода поршня не успевал охлаждаться в достаточной степени и требовалось увеличить время охлаждения, вследствие чего частота вращения двигателя также была небольшой. Термический КПД, который зависит, как говорилось ранее, от разницы максимальной и минимальной температур рабочего цикла, был также небольшим. Теплота отработавшего воздуха отводилась в охлаждающую воду и полностью терялась.

 image152 image153

Двигатель Стирлинга был значительно усовершенствован фирмой «Филипс» (Нидерланды). Прежде всего был применен внешний регенератор теплоты, через который осуществлялась перекачка воздуха из верхней части цилиндра в нижнюю под действием вытеснителя. Последовательно к регенератору во внешнем контуре был подключен радиатор. Регенератор аккумулирует теплоту воздуха, поступающего после расширения в холодную камеру. При течении воздуха в обратном направлении аккумулятор вновь отдает ему теплоту. Тем самым возрастает разница максимальной и минимальной температур цикла и теплоту необходимо отводить системой охлаждения. Радиатор, размещенный за регенератором, отводит только часть этой теплоты, остальная сохраняется в аккумуляторе и используется вновь. Вследствие этого не только улучшается КПД двигателя, но и увеличивается его максимальная частота вращения, что влияет на мощность и удельную массу двигателя. Теплота отработавших газов подогревателя используется для повышения температуры свежего воздуха, подаваемого в его камеру сгорания. Описанная конструктивная схема двигателя показана на рис. 111.

Поршень 2 является рабочим, он передает давление воздуха на кривошипно-шатунный механизм, а вытеснитель / предназначен для перемещения воздуха из верхней части цилиндра в нижнюю. В положении а воздух из пространства между двумя поршнями поступает через радиатор 3 и регенератор 4 в трубки подогревателя 6 и затем в верхнюю часть цилиндра. Трубки подогревателя размещены в камере сгорания, куда свежий воздух для сгорания подается по каналам 7 и затем, проходя через теплообменник, поступает в зону распылителя форсунки 5; отработавшие газы из подогревателя отводятся через выпускной трубопровод 8.

В положении а воздух сжат и при движении в верхнюю часть цилиндра нагревается сначала в регенераторе, а затем в подогревателе. В положении б весь воздух вытеснен из пространства между двумя поршнями и выполняет работу, перемещая оба поршня в нижнее положение. В положении в после совершения работы рабочий поршень остается в нижнем положении, а вытеснитель / начинает выталкивать воздух из верхней части цилиндра в пространство между поршнями через регенератор, в котором воздух отдает значительную часть своей теплоты, и радиатор, где воздух охлаждается еще глубже. В последней фазе цикла г воздух охлажден и вытеснен из верхней части цилиндра в пространство между поршнями, где происходит его сжатие.

Сжатие холодного воздуха, поступление его через регенератор и радиатор в верхнюю часть цилиндра, последующее расширение и охлаждение воздуха представляют рабочий цикл. В цилиндре сохраняется постоянная масса воздуха, поэтому цилиндр работает без выхлопа. Для подогрева можно использовать любой источник тепла. В рассмотренной схеме применен котел на жидком топливе; содержание вредных веществ зависит от полноты сгорания топлива в камере сгорания котла. Поскольку при этом создается режим непрерывного сгорания при относительно низкой температуре и большом избытке воздуха, можно достичь полного сгорания и небольшого содержания вредных веществ.

image154

Преимущество двигателя Стирлинга заключается также в том, что он может работать не только на разнообразных топливах, но дает возможность применять различные виды источников теплоты. Это означает, что работа двигателя не зависит от наличия атмосферы. Он может одинаково хорошо работать в замкнутом пространстве как на подводных лодках, так и на спутниках. При использовании теплового аккумулятора с LiF теплота подводится к двигателю по теплопроводу, как это показано на рис. 112.

В нижней части рис. 111 показан ромбический механизм привода, который управляет движением обоих поршней. Для привода используются два коленчатых вала, соединенных парой шестерен и вращающихся в противоположных направлениях. Концы штока вытеснителя 1 и пустотелого штока поршня 2 через отдельные шагуны соединены с обоими коленчатыми валами. Если кривошипы обоих коленчатых валов находятся в верхнем положении и движутся из положения а в положение б, то шатуны рабочего поршня 2 находятся вблизи ВМТ и он немного перемещается около ВМТ. Шатуны вытеснителя, перемещающегося в этой фазе цикла, движутся вниз и поршень также движется с наибольшей скоростью из положения а в положение б.

Противоположное направление вращения двух коленчатых валов позволяет разместить на них противовесы, необходимые для уравновешивания сил инерции первого порядка и их моментов от возвратно-поступательно движущихся масс, которые существуют у одноцилиндрового и рядных двигателей.

Ромбический механизм имеет еще и то преимущество, что шатуны симметрично передают усилия от штоков поршней на коленчатые валы, а в подшипниках и уплотнениях поршней не возникают боковые силы. Последнее очень важно, так как для работы двигателя с хорошим КПД необходимо высокое рабочее давление.

У обычных кривошипно-шатунных механизмов при высоком давлении на поршень и больших углах отклонения шатуна возникают большие боковые силы, действующие на поршень и являющиеся причиной больших потерь на трение и большого износа. При применении крейцкопфа или же ромбического механизма это отрицательное явление устраняется и можно достичь хорошего уплотнения поршней

image155

Чтобы штоки не передавати большие усилия на коренные и шатунные подшипники коленчатых валов, под рабочим поршнем поддерживается противодавление, равное среднему рабочему давлению в цилиндре, оно составляет около 20 МПа.

Зависимость индикаторного КПД от удельной литровой мощности Nуд одноцилиндрового двигателя Стирлинга мощностью 165 кВт показана на рис. 113. Температура в подогревателе равна 700 °С, охлаждающей жидкости — 25 °С. Рабочее лавление газа составило 11 МПа.

На диаграмме показаны зависимости для трех видов рабочего тела воздуха, гелия и водорода. Точки с числами на кривых обозначают соответствующую частоту вращения (в мин-1). Видно, что наибольшие значения КПД достигаются при низких значениях удельных мощностей. Заметно также большое различие показателей двигателя при использовании вместо воздуха водорода.

image156

Высокое давление рабочего тела, действующее в двигателе Стирлинга, требует наличия толстых стенок картера и цилиндра. При применении водорода в качестве рабочего тела масло не должно попадать в рабочее пространство и поэтому необходимо иметь высокогерметичное уплотнение штока поршня. Хорошо зарекомендовало себя цилиндрическое диафрагменное уплотнение в сочетании с масляной подушкой (рис. 114). Диаметры d и d2 выбраны так, чтобы объем масла под диафрагмой сальника не изменялся при перемещении штока. Маслосъемное поршневое кольцо С выполняет функцию насосного элемента, а регулятор R поддерживает давление масла под диафрагмой на уровне среднего давления газа в цилиндре.

Схематический поперечный разрез двигателя Стирлинга с ромбическим механизмом приведен на рис. 115. Это двигатель первого поколения, имеющий картер с высоким избыточным давлением. Двигатель Стирлинга постоянно совершенствуется и его четырехцилиндровая модель второго поколения уже имеет поршень двойного действия. Соединение горячей верхней камеры одного цилиндра с холодной камерой под поршнем соседнего цилиндра позволяет достичь необходимого изменения объема без отдельного поршня-вытеснителя. У четырех-цилиндрового двигателя сдвиг между кривошипами поршней соседних цилиндров составляет 90°, что весьма нежелательно.

image157

Схема соединения соседних цилиндров с таким расположением кривошипов показана на рис. 116. Соединительные трубопроводы связывают горячую камеру, подогреватель, регенератор, радиатор и холодную камеру. Два коленчатых вала вращаются в одном направлении и связаны с поршнями через крейцкопфный механизм. В нижней части рис. 116 на диаграммах жирной линией обозначены фазы цикла, соответствующие положениям 1-4 поршней. Для привода поршней используется или четырехопорный коленчатый вал (двигатели шведской фирмы «Юнайтед Стерлинг») или же наклонная шайба (двигатель «Филипс4-215DA»).

На рис 116 показаны последовательные этапы 1- 2 — сжатие холодного газа в холодной камере, 2-3 — перемещение сжатого воздуха в горячую камеру — рабочий ход, 3-4 — расширение-охлаждение газа при поступлении в холодную камеру — рабочий ход; 4-1 — перемещение газа в холодную камеру

В рядном двигателе соединительный канал между четвертым и первым цилиндрами имеет большую длину и объем, поэтому используются двигатели с V-образным или звездообразным расположением цилиндров. В обоих случаях все четыре цилиндра расположены близко друг от друга, а их верхние части (головки) образуют группы, обогреваемые общим котлом Теплоизоляция такой конструкции также отличается простотой

image158

Фирма «Филипс» внесла в двигатель Стерлинга много интересных изменений Для первых регенераторов использовались мелкие сита из тонкой медной проволоки, в дальнейшем они были заменены блоком из пористой керамики Материал регенератора должен иметь большую удельную теплоемкость и выдерживать резкие изменения температуры Поэтому регенератор должен быть разделен на несколько меньших элементов Пористый материал легко аккумулирует и отдает теплоту и позволяет благодаря этому обеспечить работу двигателя с частотой вращения до 4000 мин-1.

Мощность двигателя зависит от среднего рабочего давления. У двигателя «Филипс» это давление составляло около 20 МПа. Чтобы избежать прижатия поршня к стенке цилиндра, был применен уже упомянутый ромбический механизм и, кроме того, под рабочим поршнем была образована камера, в которой поддерживалось среднее рабочее давление газа В этих условиях кривошипно-шатунный механизм испытывает нагрузки вследствие небольших отклонений от этого давления, а также действие инерционных сил, поскольку давление газов в цилиндре меняется незначительно На рис. 117 приведены мгновенные значения относительного кругяшею момента двигателя Стерлинга и дизельного двигателя за один оборот коленчатого вала

 image159 image160

Значительные трудности возникают при регулировании мощности двигателя Стерлинга. Изменение мощности, происходящее в результате изменения количества подаваемого в подогреватель топлива, незначительно. Более заметного результата можно добиться при изменении давления или количества рабочего тела Этот способ регулирования мощности используется в автомобильном двигателе Стирлинга Для уменьшения мощности часть газа из цилиндров перепускается в резервуар низкого давления; для увеличения мощности газ подается в цилиндры из резервуара высокого давления, куда он предварительно перекачивается специальным компрессором из резервуара низкого давления. У двигателей с поршнем двойного действия для снижения мощности газ перепускается из верхней части поршня в нижнюю через специальный канал. Переход от полной мощности к холостому ходу длится 0,2 с; обратный процесс занимает около 0,6 с.

Чтобы потери на трение газа при прохождении его через узкие каналы регенератора и радиатора были небольшими, применяют гелий, а также пытаются использовать водород Для уменьшения размеров и массы четыре цилиндра с поршнями двойного действия в двигателе второго поколения размещаются как показано на рис 119 Вместо коленчатого вала применен привод с помощью наклонных шайб Наличие высокого давления газов по обе стороны поршня обеспечивает передачу на приводную шайбу только небольшой разницы давлений Поскольку в двигателе Стирлинга вся отводимая теплота передается в охлаждающую жидкость, то радиатор этого двигателя должен быть в 2 раза больше, чем у обычных двигателей внутреннего сгорания

image161

В качестве примера рассмотрим два автомобильных двигателя Стирлинга Четырехцилиндровый двигатель первого поколения с ромбическим механизмом, изображенный на рис 118, имеет диаметр цилиндра 77,5 мм, ход поршня 49,8 мм (рабочий объем 940 см 3), развивает мощность 147 кВт при 3000 мин-1 и среднем давлении в цилиндре порядка 22 МПа Температура головки цилиндра поддерживается около 700 °С, а охлаждающей жидкости — на уровне 60 С Масса сухого двигателя составляет 760 кг. Холодный пуск и прогрев двигателя до достижения температуры головки цилиндра 700 °С длятся около 20 с. При температуре воды 55 °С индикаторный КПД двигателя на испытательном стенде достиг 35 %. Удельная мощность 156 кВт/дм3, а удельная масса на единицу мощности 5,2 кг/кВт. Схематический разрез двигателя Стирлинга второго поколения модели «Филипс 4-215 DA», предназначенного для легкового автомобиля, изображен на рис. 119. Двигатель имеет примерно такие же размеры и массу, как и обычный бензиновый двигатель, и его мощность равна 127 кВт Четыре цилиндра с поршнями двойного действия расположены вокруг оси приводного вала с наклонной шайбой. Котел подогревателя, общий для всех четырех цилиндров, имеет одну форсунку. На автомобиле «Форд Торино» (США) расход топлива с этим двигателем был на 25 % ниже, чем с бензиновым V-образным 8-цилиндро-бым двигателем. Содержание NOx в отработавших газах системы подогрева благодаря применению их рециркуляции было намного меньше установленной нормы.

image162

Диаметр цилиндра двигателя «Филипс 4-215 DA» — 73 мм, ход поршня 52 мм. Мощность двигателя 127 кВт при частоте вращения 4000 мин-1. Температура в подогревателе (температура головок цилиндров) равна 700 °С, а охлаждающей жидкости — 64 °С.

Шведская фирма «Юнайтед Стирлинг» создала свой двигатель Стирлинга таким образом, чтобы можно было в наибольшей степени использовать детали, серийно выпускаемые автомобильной промышленностью. Используются обычный коленчатый вал и шатун, который совместно с крейцкопфом преобразует во вращательное движение вала поступательное движение поршня двойного действия. Разрез этого четырехцилиндрового V-образного двигателя изображен на рис. 120. Ряды цилиндров расположены под небольшим углом, головки цилиндров образуют общую группу, подогреваемую одной горелкой.

Предполагаемая удельная масса этого двигателя равна 2,4 кг/кВт, что можно сравнить с показателями очень хорошего малоразмерного высокооборотного дизеля. Удельная масса двигателей Стирлинга уменьшилась с 6,1-7,3 кг/кВт до 4,3 кг/кВт и постоянно снижается.

image163 

Производство двигателя Стирлинга требует технологии, совершенно отличной от технологии производства двигателей внутреннего сгорания, что будет тормозить его внедрение в производство. Однако разработки таких двигателей продолжаются, поскольку традиционные бензиновый и дизельный двигатели не будут отвечать перспективным требованиям необходимой чистоты отработавших газов, а созданные двигатели Стирлинга дают основание надеяться, что эту проблему удастся решить. Так как изменение давления газов в цилиндре двигателя Стирлинга носит плавный характер, то он работает стабильно и тихо, напоминая паровую машину. Однако большое количество отводимой теплоты требует новых решений в области систем охлаждения.

Большой прогресс в двигателях Стирлинга достигнут при создании двигателя “Филипс 4-215 DA”. Двигатель предназначен для при менения в легковых автомобилях и занимает в них столько же места, сколько и обычный бензиновый V-образный двигатель равной мощности. Масса двигателя «Филипс 4-215 DA» равна 448 кг и при максимальной мощности 127 кВт его удельная масса составляет 3,5 кг/кВт. Индикаторный КПД этого двигателя при использовании в качестве рабочего тела водорода под давлением 20 МПа равен 35 %.

Холодный пуск двигателя длится 15 с, расход топлива автомобилем в условиях городского движения на 25 % меньше, чем в случае обычного бензинового двигателя. Регулирование мощности двигателя производится изменением количества и давления рабочего тела.

Плотность водорода в 14 раз ниже плотности воздуха, а его теплоемкость также в 14 раз выше теплоемкости воздуха. Это положительно сказывается на гидравлических потерях, особенно в регенераторе, и в целом ведет к росту КПД двигателя (см. рис. 113).

 

Материал взят из книги [12].